Staphylococcus aureus forms spreading dendrites that have characteristics of active motility

نویسندگان

  • Eric J. G. Pollitt
  • Shanika A. Crusz
  • Stephen P. Diggle
چکیده

Staphylococcus aureus is historically regarded as a non-motile organism. More recently it has been shown that S. aureus can passively move across agar surfaces in a process called spreading. We re-analysed spreading motility using a modified assay and focused on observing the formation of dendrites: branching structures that emerge from the central colony. We discovered that S. aureus can spread across the surface of media in structures that we term 'comets', which advance outwards and precede the formation of dendrites. We observed comets in a diverse selection of S. aureus isolates and they exhibit the following behaviours: (1) They consist of phenotypically distinct cores of cells that move forward and seed other S. aureus cells behind them forming a comet 'tail'; (2) they move when other cells in the comet tail have stopped moving; (3) the comet core is held together by a matrix of slime; and (4) the comets etch trails in the agar as they move forwards. Comets are not consistent with spreading motility or other forms of passive motility. Comet behaviour does share many similarities with a form of active motility known as gliding. Our observations therefore suggest that S. aureus is actively motile under certain conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of Colony-spreading Activity of Staphylococcus Aureus by Secretion of Delta-hemolysin

Background: Staphylococcus aureus spreads on soft agar surfaces, a phenomenon called “colony-spreading”. Results: We purified delta-hemolysin from S. aureus culture supernatant as an inhibitor of colony-spreading, and its disrupted mutant had high colony-spreading ability. Conclusion: S. aureus negatively regulates colony-spreading by secreting delta-hemolysin. Significance: This is the first e...

متن کامل

The Sortase A Substrates FnbpA, FnbpB, ClfA and ClfB Antagonize Colony Spreading of Staphylococcus aureus

Staphylococcus aureus is an important human pathogen that is renowned both for its rapid transmission within hospitals and the community, and for the formation of antibiotic resistant biofilms on medical implants. Recently, it was shown that S. aureus is able to spread over wet surfaces. This motility phenomenon is promoted by the surfactant properties of secreted phenol-soluble modulins (PSMs)...

متن کامل

Requirement of the agr locus for colony spreading of Staphylococcus aureus.

The important human pathogen Staphylococcus aureus is known to spread on soft agar plates. Here, we show that colony spreading of S. aureus involves the agr quorum-sensing system. This finding can be related to the agr-dependent expression of biosurfactants, such as phenol-soluble modulins, suggesting a connection between spreading motility and virulence.

متن کامل

In-vitro and In-vivo Evaluation of Silymarin Nanoliposomes against Isolated Methicillin-resistant Staphylococcus aureus

Staphylococcus aureus is an opportunistic pathogen and remains a common cause of burn wound infections. Different studies have shown that entrapment of plant-derived compounds into liposomes could increase their anti-Staphylococcus aureus activity. Silymarin is the bioactive extract from the known plant Silybum marianum L. The objective of this study was to evaluate efficacy of silymarin in fre...

متن کامل

Evaluation of Wi-Fi Radiation Effects on Antibiotic Susceptibility, Metabolic Activity and Biofilm Formation by Escherichia Coli 0157H7, Staphylococcus Aureus and Staphylococcus Epidermis

Background: The radiation emitted from electromagnetic fields (EMF) can cause biological effects on prokaryotic and eukaryotic cells, including non-thermal effects. Objective: The present study evaluated the non-thermal effects of wireless fidelity (Wi-Fi) operating at 2.4 GHz part of non-ionizing EMF on different pathogenic bacterial strains (Escherichia coli 0157H7, Staphylococcus aureu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015